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In this work, we develop a Reynolds stress model along the line of the approach presented by Huang
[Commun. Nonlinear Sci. Numer. Simu®, 543 (2004)], aiming to assess the role and contribution of the
mean spin tensor in turbulence modeling. Here, the constitutive functional for the Reynolds stress depends on
the mean spin tensor as well as the mean stretching tensor and its Jaumann derivative, the turbulent kinetic
energyK, and the turbulent dissipation raée which is at the complexity level gb=1,m=1, andn=0 of a
rate-type constitutive equation for the Reynolds stress proposed in the aforementioned paper. The explicit form
for the Reynolds stress is obtained with recourse to the representation theorem and the theory of invariants
developed in modern rational continuum mechanics, and, as an approximation, a nonline&-eubadel is
worked out in which the model coefficients are analytically identified based on the experimental results of
Tavoularis and Corrsifd. Fluid Mech.104, 311(1981)]. In addition, numerical results based on this model, in
the forms of employing the Jaumann derivative and the Oldroyd derivative, respectively, for homogeneous
turbulent shear flow and fully developed turbulent flow over a backward-facing step, are presented in com-
parison with those obtained based on a few previously proposed linear and noHliaearodels, showing
reasonably good agreement with the experimental results and the DNS data concerned and a better perfor-
mance than the previously developed quadratic models.
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[. INTRODUCTION rather than the Euclidean group of transformations as taken
o ) ) before from the perspective of kinematics analysis; and, as a
In a note Rivlin[1] pointed out that there exists an anal- resylt, unlike modeling the non-Newtonian fluids in which
ogy between the constitutive equation for the turbulent flowsase the constitutive equations exclude the spin tensor from
of a Newtonian fluid and that for the laminar flows of non- peing a constitutive variable in accord with the principle of
Newtonian fluids. Indeed, as seen over the past four decadegaterial frame-indifference in continuum mechanics, the
a great deal of research concerned indicates that in marfyame-dependent kinematical quantities, e.g., the mean spin
aspects the turbulent flow of a Newtonian fluid behaves likeensor, may be allowed to play an effective role in turbulence
non-Newtonian fluids, e.g., showing nonlinear ViSCOG'aStiCitymode"ng_ Therefore, in the sense of being in Conformity
and fading memory of its own historgee, e.g., Huanf2],  with the averaged Navier-Stokes equations, a number of tur-
Tavoularis and Corrsirj3], Liepmann[4], and Proudman pulence closure models proposed hitherto, for examples, the
[5]). However, there were controversies concerning the vamodel of Popd8], the model of Gatski and Spezidi], the
lidity of the principle of material frame-indifference in con- model of Shihet al.[10], and the model of Crafet al.[11],
tinuum mechanics when applied to turbulence modeling. Byare all physically justified to include thmean spin tensaas
examining a steady homogeneous turbulent plane strain in @ constitutive argument. Of course, there are relevant math-
steadily rotating framework based on a second-order closurgmatical constraints to be observed, such as the realizability
model, Lumley[6] showed that the effect of rotation on the (see SchumanfiL2] and Lumley[13]).
Reynolds stress is serious and concluded that the principle of In this work, we shall deve]op a Reyno|ds stress model
material frame-indifference is dramatically violated in turbu- involving the mean spin tensor along the line of the approach
lence and thus should be discarded in turbulence mOdeling)resented in Huanf®], to further assess the role and contri-
Recently, in a work aiming to clarify and set straight the pution of the mean spin tensor in turbulence modeling. To
controversies concerned in modeling the Reynolds stress, ikis end, here, we consider a constitutive equation for the
has been shown by Huang and Dufg} that, due to being Reynolds stress that depends ot+—the Jaumann derivative
subjected to thedynamical processnduced adscititiously of the Reynolds stress, the mean stretching teBsand its
from taking the ensemble average on the Navier—Stokeg(,iur.n(,jmn derivativéo), and the mean spin tensw, along

equations, in fact, the invariance group of the Reynqld%ith the turbulent kinetic energil and the turbulent dissi-
stress is the extended Galilean group of transformatlonBation rates. With recourse to the representation theorem
and the theory of invariants developed in modern continuum
mechanicgsee Wang[14], Smith [15], and Spence[16]),
*Electronic address: yuninghuang@yahoo.com the explicit form of this constitutive equation is obtained
"Electronic address: hyma@163bj.com and, furthermore, an approximate form is worked out in
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which the model coefficients are identified based on the ex- Equation(3) is a special case of a rate-type constitutive
perimental results of Tavoularis and Corr§8j. In addition,  equation for the Reynolds stress proposed in Rgf.which

to evaluate the role and contribution of the mean spin tensareads

in turbulence modeling, the numerical calculations based on

this new nonlineak-¢ model in the forms of using the Jau- R (7,5, ... ,;-p;le)l, o DWW, ... W,K,e) =0,
mann derivative and the Oldroyd derivative, respectively, for

homogeneous turbulent shear flow and fully developed tur- (4)
bulent flow over a backward-facing step will be presented in.e., at thecomplexity levebf p=1,m=1, andn=0, where
comparison with those obtained by employing a few previ-R is the constitutive functional.

ously proposed-& models. Note that the constitutive equatigB) takes into account

Il. A CONSTITUTIVE EQUATION FOR THE REYNOLDS fnom?] h'tftct’r{]iﬁﬁetcf ‘;; both t?ﬁ Rre3|/”)c("?is r?”?'ld ;ht‘;
STRESS INVOLVING THE MEAN SPIN TENSOR ean stretching tensab, €.9., n€ refaxation efiect of he

Reynolds stress, by containing their Jaumann derivatives as
A. Theoretical background constitutive variables. Clearly, with the mean spin tensor
W'’s being taken to be a constitutive variable, the constitutive

We consider the turbulent flows of an incompressible ) ; . L
Newtonian fluid. The mean continuity equation and the€duation(3) includes as a special case the constitutive equa-

Reynolds-averaged Navier-Stokes equations read, respetin investigated in Refi2], which is

tively, o
o 7=L(7,D,D;K,e). (5)
divw=0, (1)
It should be noted that, in the pap@] on modeling the
Dv Reynolds stress in the context of continuum mechanics, it
U div(T - ¢7) + 0B, (2)  has been stressed that, although it was pointed out by Rivlin

[1] that there exists a similarity between the constitutive
where an overbar represents the mean value of ensembdguation for the turbulent flows of a Newtonian fluid and that
averagep is the mass densitconstant, B is the prescribed for the laminar flows of non-Newtonian fluids, in reality,
body force densityD/Dt denotes the material time deriva- generally speaking, modeling the Reynolds stress appears to
tive associated with the mean velocity field T=-pl be much more involved and more complicated than model-
+2uD, whereinl is the unit tensorD:%[grad7+(grad7)T] is ing the Cauchy stress in the sense that the frame-dependent
the mean stretching tensqr,is the mean pressurg, is the ~ kinematical quantities, e.g., the mean spin tensor, may be
viscosity, andr: =v’ ® v’ is the Reynolds stress tensor, the allowed to play an effective rolesee Refs[2,6-8) in tur-
modeling of which leads to the so-calletbsure problenin ~ bulence modeling, whereas in modeling the Cauchy stress of
turbulence modeling. a non-Newtonian fluid the frame-dependent kinematical

Here, we follow the approach presented by Hufigigto ~ quantities, such as the spin tensor, are excluded from being
establish a constitutive equation for the Reynolds stress the constitutive variables to be in accordance with the prin-
involving themean spin tensow—its constitutive equation Ciple of material frame-indifference in continuum mechanics.
takes the form

o ° B. The explicit form of the model and its approximations
7=F(7,D,D,W;K,e), 3

) o ) . By making use of the representation theorem and the
where F is the constitutive functional, * denotes the Jau-theory of invariants of Wang14], Smith [15], and Spencer
mann derivative, 7=D7/Dt+7W-Wr, D=DD/Dt+DW  [16], we obtain the following irreducible explicit form for
-~WD andW =3[grad/—(grad/)"]. the constitutive equatio(8):

7= F(¥D,D,W;K,e)
= agl+a,7+a,D +agD + by(7)2 + b,D? + by(D)? + bW2 + ¢,[ 7D + DF] + ¢,[(7)%D + D()?]
+ Gy 7D2+ D27+ G (7)2D2 + DA(H)?] + dy[ 7D + DF] + Ayl (7)2D + D(5)2] + df #D)? + (D)27] + AL (NAD)? + (D)A(?]
+e,[DD + DD] + e,[D?D + DD?] + e D(D)? + (D)?D] + [ D¥D)?+ (D)2D?] + f,[ 3W — W] + f,[W W]
+ f3[(P)?W = W (%] + f[W(7)?W] + f[ W WZ = W27W] + g;[DW ~ WD] + g,[ WDW ] + go[ D°W — WD?]
+ g [WD2W] + gL WDW?2 - W2DW] + h,[DW — WD ] + hy[ WDW] + hy[(D)2W — W(D)?] + h,[W (D)W ]
+ h/ WDW?2 - W2DW], (6)
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where othe coefficientsy,a;,a,, ... ,h,;, and hs are functions ofK and ¢ as well as the following invariantgnote that

trD=trD=0):

tri= 2DK/Dt, tr(5), trD2, tr(D)2, tr(5)3, trD3, tr(D)3, trW2, tr] 7D, tr[ (32D ], trf ¥D2], tr[ ($)2D2], tr 5D, t{ (2D ], t (D)),
tr[(9(D)?],t{DD], t[D2D], t{ D(D)?], t{ DA(D)2], tr ¥W 2], t] (1) 2W2], tr] () 2W25W ], t{ DW2], tf D2W2], trf DAW2DW ],
tr[DW2], tr[ (D)2W?2], tr] (D)2W2DW ], t DD ], tr sDW 1, tr{ (H)2DW ], t $D?W ], tr[ sW2DW ], tr[ sDW 1, tr[ (H)2DW],

tr[+(D)2W ], t[¥W2DW ], t[DDW ], [ D2DW 1, tr[ D(D)?W ], t{ DW2DW ]. (7)
[
It is clear that at the present time it is certainly impossible K2 — 2KKe
and also unrealistic to identify all the coefficients +2C,a—— D+ b,W? + el[DD + DD]
ay,34,8y, ...,h,, @andhg appearing in Eq(6), which are func- €
tions of the invariants listed in Eq7) as well asK ande, G [DW —WD] + hl[IQDW —Wf)], (10)

based on the presently available experimental results and the
DNS data for turbulence. Thus, we are content with working
out an approximate form to E@6) so that it can be practi- where for simplicity in notation and without confusion, here-

cally applied to turbulence modeling. inafter, an overdot is also used to denote the material time
To this end, first, let us consider the following process ofderivativeD/Dt associated with the mean velocity field
approximation. We shall neglect those terghs which are Note that in Eq(10) the coefficientsay,a;,a,,a3, by, €,

nonlinear in¥ andD; (Il) which are cubic or of higher order andh; are functions of the invariants listed in K@), K and
in form involving 7,D D andW; and (Ill) the quadratic ° and are independent of one another. Therefore,(Eg).

terms involving, namely, only the linear term of is con- can be written as
sidered here. Consequently, we arrive at the following ap-

proximate form for Eq(6): . , . K2 — 2KKe ,
s . T=apl+ D+ aD+asD+ apq———F D+ asW
T=agl+a,7+a,D +b,D? + by(D)? + b,W? + e,[DD + DD] *
+ ag[DW —WD]+ ay[DW - WD] + ag[DD + DD],

(11

+gy[DW - WD] +h,[DW - WD]. (8)

Second, here, we shall apply an approximation technique
akin to the so-called Maxwellian iteration as done by Huan
[2]. In fact, this method was introduced by Truesd&il] in
his studies of kinetic theory of gases and given the nam
later, it was used in extended thermodynamiese Muller
and Ruggeri[18]) and introduced to turbulence modeling =trD= 0, we have
(see Refs.[2,19)). Thus, we substitute the standakde
model(see Launder and SpaldifgQ])

thel’eao,al,az, ...,a7, andag are functions oK, ¢ and the
eInvarlants listed in Eq(7).
Takmg contraction on Eq(11) and observing that B

trr= 2K = 3ag + a,trD? + astrW? + 2a8tr(DE)). (12

2K K2
7=——-1-2C,—D, 9) . _ _
3 € On substitution of Eq(12) into Eq. (11), it follows that
whereC,=0.09, into the right hand side of E(B) for Tto oK 1
arrive at(note that1=0) = ?1 +a,D+ QZ{DZ - gtr(Dz)l} + a3|°D
K2& — 2KKe 2 2
+tay————D+as| W - —tr(W )1 |+ ag[DW
8

2K K2 o
=gl+a,| —1-2C,—D |+ + +b,D%+ 2 o o o e 2 .
T=31 al{ 3 1 ZCM - D:| a,D +azD + b,D” + b,W —WD]+a7[DW—WD]+Q8[DD+DD—§U(DD)1].
+&[DD + DD] + g,[DW — WD] + h,[DW - WD] (13)

2. K2> o
=|ay+— + +b,D?+|a;-2C,—
(ao 3Ka1>1 8D +b,D <a3 2y e b In addition, dimensional analysis gives
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< L L e K—2D+ c:ZK—3 Dz—ltr(Dz)l - CZK—sf)
al—ﬁls, az—ﬁzgzv a3—,3382, =73 W 7l 2 3 7Lz
K* . - K o, 1
3 3 - ¥3C,—5(Ke—2Ke)D + Bs— | W2 - ~tr(W9)1
K K He € 3
=Py, as=PBs 3, =B 3
& & & K3 K4 o o
+ B6—2[DW -WD]+ ﬂ7—3[DW -WD]
& &
4 4 4
ar=Pr 3, =P 3. (14) + o | DD + BD - (DD 18
& & BB 83 3 I’( ) . ( )
With Eq. (14), now Eq.(13) reads In the following, we shall determine the -coefficients
Bs. Bs, B7, and Bg according to the experimental results.
2 3 5 1 5 K3 o
T= ?1 + Bl:D + 182? D” - Etr(D 1|+ 183?D C. Identification of the model coefficients
K2 _ K3 1 Ever since Prand{25] put forth his pioneering mixing-
+ By (Ke = 2Ke)D + Bs— | W2 = ~tr(W?)1 length theory in which for the first time the notion of eddy
& € 3 viscosity introduced by Boussine$g6] was found of prac-
K3 4 0 tical application in turbulence modeling, the workers in tur-
+56?[DW‘WD]+B7§[DW‘WD] bulence modeling have been facing the arduous tasks in
identifying the model coefficients for their proposed
+ K_4 DD + DD - Etr(DIOD)l (15) models—the process of which is usually a painstaking inter-
'8883 3 ' play between the theory and the relevant well-devised ex-

periments(see, e.g., Launder and Spaldif#y], Gatski and

where the dimensionless Coefﬁcierm,lgz,_u,ﬁw and BS Spezia|e[9], and Shihet al. [10]) W|th the rapid deVelOp'
are functions oK, &, and the invariants listed in Eg7). ment of the supercomputers as witnessed in the past two
Recall that a nonlineak-e model was developed as one decades, the direct numerical simulation, although still very

example to illustrate the general approach to modeling th&0stly even for relatively low or moderate Reynolds number
Reynolds stress by Huarig], which is turbulence simulation at the present stage and also having its

own difficulties, now, however, plays a more and more im-

2K K2 K3 1 K3, portant role in turbulence modeling and provides a valuable
7=—1-2C,—D+ ylci?[Dz - —tr(Dz)l} - yzci?D means that helps to determine the model coefficients appear-
3 € 3 ing in such as the two-equatidre (low Reynolds number
K2 : models and in the so-called large-eddy simulation of turbu-
- 73CM§(K6—2KE)D, (16)  lence (see, e.g., Kimet al. [28], Speziale[29], Rodi and

Mansour[30], and Kasagi and Shikazorj81)).
Now let us consider the following form of E¢L5), which

where C,=0.09, y,=2.896, y,=2.784, andy;=0.843. The includes Eq(16) as a special case, namely:

coefficientsy,, y,, and y3 were analytically identified based
on the averaged values of the experimental results of Tavou- 2K K2 K3 S K3
laris and Corrsin[3], Tavoularis and Karnik21], and the 7= 1*ph D+pr 5| D —3tr091 * By 2D
DNS data of Rogerst al. [22]. The numerical calculations
based on thigjuadraticmodel given in Ref[2] for homoge-
neous turbulent shear flow and fully developed turbulent

K2 . - K, 0, 1
+Bi_3(Ke = 2Ke)D + Bs 5| W2~ _tr(WH)1
&€ &€

flow over a backward-facing stgsee Yanget al. [23]) are 3 4
comparable with those obtained by employing the model of +,86K—2[DW -WD] +,87K—3[f)w —WI:°)]
Shih, Zhu, and Lumley10] and that of Craft, Launder, and € €
Suga[11], showing a reasonably good agreement with the kKA . . 2 .
experimental results of the Reynolds stresses given in Driver + ,88—3[DD +DD - —tr(DD)l} , (19
and Seegmillef24], except in the region near the reattach- € 3
ment point in backward-facing step flow. _ where B,=-2C,, B,=1C,=2.896C%, B3=—7,Ci=
Itis evident that to include Eq16) as a special case we —2.784Ci, Ba==v3C,=-0.84%,,, Bs, Bs, B7, and Bg are to
can simply set in Eq(15) be determined.
Here, we shall adopt the experimental results of the fully
B1=-2C,, Br= ylci, Bz=— yzci, Ba=—vC, developed homogeneous turbulent shear flow in Tavoularis

(17) and Corrsin 3] to identify the coefficient®s, Bg, 37, and Bg.
However, since in homogeneous turbulent shear floly
to obtain +DD reduces td?W +WD?=0 (note thatD=0), the coef-
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ficient Bg is thus not determinable at the moment with the B[ KS 34 S 57 KS
above-mentioned experimental results and will be left for alZ:_Z e 2 —(Ke &= 2Ke ) 4\ ¢
determination in future work. Therefore, we shall consider
C B KS
2K K? K o, 1 K3 = —2‘*< ) 44{6112(4 2C21)< )
7=—1+p,—D+B,—| D" - Ztr(D)1| + B3—D &
3 € € 3 e
KS B7[ KS\®
K2 K3 +(2-Co| — ||~ 2\ ) (26)
+ B i (Ké - 2Ke)D + 35 W2 - —tr(WZ)l &
. . in which Eqgs.(34) and(35), in this case reduced to
K K% o 0
+B5_5[DW ~WD]+ 5—5[DW - WD]. (20) K =-2KSa,- ¢, (278
Note that the anisotropy stress tensor is definedaas &2
=[7-(2K/3)1]/2K. Then Eq.(20) can be written as £=-2C,eSa,— C*’ZE' (27b
2
= ﬂED ¥ @K_Z{Dz - ltr(DZ)l} @ D have been used. _ _
2 ¢ 2 ¢ 2 ¢ Taking the asymptotic value of E¢R6) then yields
54 Bs K 2 1 2 w C ,8 KS 2
PP 5 a(Ke-2KeD+ 22 52| W' —tr(W )1 A= __2E< - *| a4 -2C,)| — | +(2-Cyp)
'i = [DW - WD] + B 3[DW WD]. (21 X<K_S> ] _ &(K_S> 28)
€ /o 4\ ¢ /),

Let us consider the fully developed homogeneous thbUwhereC =0.09C,;=1.44, andC,,=1.92.
lent shear flow, in which the gradient of the mean velocity | addmon it follows from Eq(21) that

field
e 520520
0SO0 UWoosle ), a\e), 24\ s/, 4\e))
(grad)=[{0 0 0], (22 (29)
00O
2 2 2 2
whereS=const. It follows that the mean stretching tensor a;cz:&(K—S) +&<K—S> _&<K—S> +&<K—S) .
24 4\ e/, 24\ ¢ /), 4\ e/,
0 S2 0 (30)
D)=[(92 0 O 2 . .
(®) ' 23 By Eq. (25) together with Eqs(28)—(30), and noting that
0O 0 O 2 2 2 2
,82:le#:2.89&:#, B3:_’}/2CM:_2.78‘[:/L, ﬁ4:_’)/3C,u:

and the mean spin tensor ~0.84%,,, we obtain

Bs=7,C,=0.848L", fs=ysC’,=0.6344,

0 S20
W)=(-52 0 0]. (24) B7=—yC2=-0.776T°. @31
0 0 0 . ’

Finally, we arrive at the following nonlinedf-¢ model

Here, it is worth noting that the work of Leet al. [32]  which adopts the Jaumann derivative:
reveals interesting similarities in statistical correlations and ) 3 3
instantaneous structures between the viscous sublayar-of = %1 + ,BlK—D + ﬁzK_z[Dz _ }tr(Dz) 1] + ,33K—2[°3
homogeneoysturbulent channel flow and theomogenous 3
turbulent shear flow at high shear rate. K2

The asymptotic values of homogeneous turbulent shear +By—(Ke - 2Ke)D + Bs— [WZ——tr(WZ)l}
flow in Tavoularis and Corrsifi3] are as follows: €

K3 K4 o o

a;;=0.197, aj,=-0.140, a;,=-0.143, + Be—[DW -WD] + g,—[DW -WD], (32
€ &€

SK where /31- -2C,, B=yC,=2.896C2, ,83——)/20 =

<) = 6.25. (25 -2.784C%, By=- 'y3C =-0. 843: Bs= 740 =0.848ZL7, 36

” =¥5C5= 06344:2 and /37_—y6c =-0. 776'(23 Note that

In homogeneous turbulent shear flow, by E2fl), we have due to the mvolvement oID the Jaumann derlvat|ve @,
for the anisotropy shear streasg, the last term is in fact a cubic term.
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Moreover, if the Jaumann derivative is replaced by the[24] as well as the DNS data of homogeneous turbulent shear
Oldroyd derivative, then, after going through the same proflow in Matsumotoet al. [35], respectively.
cedure as above based on the experimental results of Tavou- (1) The standar&-s model (SKE) [20]:
laris and Corrsifj3], we arrive at the following model which
extends the one given by Huaf#j to include the contribu- 2K K2
tion of the mean spin tensW: 7= ?1_ ZC#:D, (36)

2K K? K3 1 K3| ©
F=—1+ ﬁl D+ 52 [DZ - —tr(D2)1] + 33—2{D whereC,=0.09.
3 3 & (I1) The nonlinear quadratiK-s model of Spezial¢36]:
1tr(5)1] +8 KZ(K' 2Ke)D + 3 KS[WZ 2K K2 K3
_= 2 Ke - 2Ke ®
3 g3 ° g2 7= ?1 2C, —D +4CpCl— [DZ— —tr(DZ)l]
3 4 o

- 1tr(w2)1] + 56K [DW -WD]+ 37K [DW - WD] 1
3 &? & +4CeCl— [D - —tr(D)l} (37

(33

where f,=-2C,, B,=~401C,=-8.01Z, B3=~40:C.  \where C,=0.09, Cp=C¢=1.68, and D=D-(grad/)D
=—5.96&,, B4=-05C,=-0.84%,, fs= ‘74C =1.07%,,  _D(grad))" is the Oldroyd derivative oD.

2 — — 3
Po=05C,, 23412, "and '37‘_"6(: =-0. 776-5 Here, (Il The nonlinear cubic model of Craft, Launder, and
¢ denotes the Oldroyd denvauveD DD/Dt-(grad)D  Suga(CLS) [11]:

-D(grady)". As in Eq.(32), because of the involvment &f, 2K ~ K2 K[, 1 K3
the last term is in fact a cubic term as well. 7= ?1‘ 2CM§D +Bl:9~_z D - §tr(D 1|+ Bsz(WD
K3 2 1 2 2
lIl. NUMERICAL RESULTS OF TWO BENCHMARK —DW) + B3— | W* - Str(W9)1 yl~3tr(D )D
TURBULENT FLOWS € 3
. : . : K4 K4 2
In the following numerical calculations, the conventional - y2~—3tr(W2)D - Y323 W?2D + DW? - =tr(W?D)1
modeledK equation and: equation will be used, which are € € 3
_ K4
- : K
K:_Tnﬂ_“i(ﬁ&_> VK. (30 - Y425 (WD? - D2W), (38)
an IXi\ Ok IX; €
— ) wherez is the isotropic dissipation rate.
. & z?v, € d [vrde 2
e=—-Cy— 7'Il —Cp—+—| —— | +vV7%,
K K dx\o,dx c - 0.3{1 — exg— 0.36/exp- 0. 75r])]}

(35) C 1+ 0.35;°2 =maxs),
where v;=C,K?/¢,C,=0.09C,1=1.44C_,=1.92 0x=1.0,
ando,=1.3. However, it should be noted that modeling ¢he
equation, due to having more unknown terms that need to be
modeled, thus, poses more severe difficulties than modeling
the K equation, which is not only the trace of the Reynolds =
stress transport equation but also, importantly, a direct cornd 8,=-0. 4Cw B2=0. 4Cw Bs=-1. OZC#, 71=7.=40.0C,
sequence of the first law of thermodynamics as shown in;=0, andy,=-80. @C3. Note that, sincey;=0, the CUbIC
Huang and Dursf33]. In fact, both Eq.34) and Eq.(35), term with (W2D+DW5) in fact makes no contribution in
especially the latter, need to be modified so as to better prexumerical simulations.
dict the complex turbulent flowgsee, e.g., Launder and  (IV) A nonlinear quadratik-e model (using the Jau-
Spalding[27], Spezialg29], and Yoshizawd34]). Although  mann derivativg given by Huang2]:
this is not our main concern in this work, we should keep in
mind that, if any modifications were made to the conven- 2K K2 ) ,K3.
tional modeledK equation(34) ande equation(35), all the 7~ 3 S 1-2C, _D + 7’1Cu &2 D”- —tr(D )1 VZCM?D
coefficients appearing in the modélkb) and(16) should be 5
reidentified correspondingly according to the experimental _ 7C, K 2 (Ke- 2Ke)D (39)
results. " e

We shall carry out numerical calculations based on seven
linear and nonlineaK-¢ models and make a comparison whereC,=0.09, y;=2.896, y,=2.784, andy;=0.843.
with the experimental results of fully developed turbulent (V) A nonlinear quadrati&-e model(using the Oldroyd
flow over a backward-facing step in Driver and Seegmillerderivative given by Huang2]:

in which

S=(KBE)[2t(DY]H2, Q= (K/E)[- 2t(WH) ]2,
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2K K2 5 K3 5 1 ) 100
T= ?l—ZCM:D—40'1CM? D —étl’(D )1 [
K31 e K> . I ° gI'::/Spezlale
- 40'2CM? D - é(trD)l - USC#E(KS - 2Ke)D, s ., - Huang
[ - - = -CLS
(40) | ———— Present

whereC,=0.09,0,=2.003 0,=1.392 03=0.843.

(VI) The present model employing the Jaumann deriva-x¥ sp
tive:

_2K K? K L, 1 K3
T= ?1— ZCM:D + ’le#? D - gtl’(D )1 - YZCM?D

K2 .. K3 1
- 75C,,—5(Ke = 2Ke)D + y4CfL—2[W2 - gtr(WZ)l]
€ &

K3 K4 id 2 L L L L L L L L L L L L
+ ySCi?[DW -WD] - yeciE[DW -WD], (41 h t - 15
st
where C,=0.09,7,=2.896, 7,=2.784, 7;=0.843, v,
=0.8482,y5=0.6344, andy;=0.7767.Clearly, this model
has generalized, in the sense of refining, the m¢a@8)J to

FIG. 1. Time evolution of the turbulent kinetic enerfy

be in cubic order by including the contributions tife It is seen from Fig. 1 that the result obtained based on the
mean spin tensow. present model shows a good improvement over that pre-
(VIl) The present model employing the Oldroyd deriva-dicted by the .model of Huan@] and, in addltlon,_m a good
tive: agreement with the trend of the DNS data, a bit better than
5 5 the result predicted by the model of Craft, Launder, and Suga
L P S CZK—{DZ— Etr(DZ)l} [11]. Since in this case the anisotropy shear stegsss the
3 He 1o g2 3 only stress that contributes to modeling the time evolution of

k3l R K2 _ the turbulent kinetic energ¥, as can be seen f_rom.Eqs.
- 4‘72C;2L_2[D - —(trD)l] - 04C,—5 (K& - 2Ke)D (279 and(27b), the present mode(@1) and(42), giving rise
€ 3 2 to the same;,, produce the same result for the time evolu-
K3 1 K3 tion of K. It is interesting to observe that, in this case, in the
+ 04Ci—2[W2 - étr(WZ)l] + 05Ci—2[DW -WD] cubic model of Craft, Launder, and Sugfd], the linear term
¢ ¢ with C,, actually is the only term that contributes to model-
ing a;», Whereas in the present cubic modél), the cubic
term with coefficientys combines the linear terms with co-
efficientsC,, and y; to make a joint contribution to modeling
where C,=0.09, 0,=2.003, 0,=1.392, 03=0.843, 04  the anisotropy shear stress, and, similarly, the cubic
=1.075, 05=3.419, and26:0.7767. tere, O denotes the  model(42), which employs a different objective derivative,

Oldroyd derivative, D=DD/Dt-(grad/)D-D(grad/)". the Oldroyd derivative, does the same in this regard.
Clearly, Eq.(42) includes Eq.(40) as a special case.

K4 o o
- o-eCi;[DW -WD], (42)

A. Homogeneous turbulent shear flow B. Fully developed turbulent flow over a backward-facing step

It has been well recognized that the homogeneous turbu- The fully developed turbulent flow over a backward-
lent shear flow is a simple but critical test case for any newlyfacing step, especially with a high ratio of the step height to
proposed model to better capture the complex turbulenthe tunnel exit height, is another benchmark test case for the
flows encountered in engineering practice. Here, the fourthaccuracy of the closure models in predicting the reattach-
order Runge-Kutta method has been used to calculate thgent location and the skin friction coefficient distribution
evolution of the turbulent kinetic enerdy with the dimen-  along the tunnel. In this cageee Fig. 2, we shall carry out
sionless time” =St (also called theotal sheay, whereSis the corresponding numerical calculations based on the above
the mean shear rate. The numerical results based on tis@ven linear and nonline&-¢ models(I-VIl) and compare
above models are presented in Fig. 1 in comparison with théhe results with the experiments of Driver and Seegmiller
DNS data of Matsumotet al. [35] (note that the mean shear [24], in which the geometry has a step heighp to tunnel
given by Matsumotet al.[35] is S=9U/dy=30 s, whereas exit height ratio of 1:9 and the Reynolds number based on
in the experiments of Tavoularis and Corrsif8] the step height and the experimental reference free-stream
S=46.8 s1). The initial condition of K;=10.148 05 and velocity is 37423.
£0=62.8489 at"=1 is taken from the DNS data of Matsu-  Here, the same code based on the finite volume method
moto et al. [35]. with nonorthogonal gridgsee, e.9.[37]) has been used in
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FIG. 2. Schematic of the turbulent flow over a backward-facing 13)
step.

0-003IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Recirculation region : :

8H Uret Reattachment point - e e === ]
0.002 |-
y |
—y i
< |
x/H=0 0.001 |-

J
,/ o EXP
—— SKE

Huang (Jaumann derivative)
- = = CLS
——————— Present (Jaumann derivative)

0

our computation. Variable storage is colocated and cell-
centered, with Rhie-Chow interpolation for cell-face mass
fluxes. ThesIMPLE pressure-correction algorithm is used to _g go1
obtain the pressure field. The convection and diffusion terms

of all the equations, including the mean momentum equa-
tions and the modeled transport equations for turbulence N T T T T T
quantities, are approximated by the second-order central dif 0 5 10 15 20 25 30
ferencing scheme. In addition, the deferred correction tech- xH

nique is used for the discretization of the convection term. FIG. 3. Skin friction coefficient Edistribution (1)
Stone’s (strongly implicit procedure method is employed

with under-relaxation factors and, in order to stabilize the _
iteration, a time marching process has been adopted. ConvdPlodels(41) and(42) (see, e.g., Rodi and Mansol80]), so

gence is judged by monitoring the magnitude of the absoluté1t they can be feasibly applied to modeling complex turbu-

residual sources of mass and momentum, normalized by tHgnt flows. In addition, ayeneralizedwall function for three-

respective inlet fluxes. The iteration is continued until all thedimensional turbulence recently proposed by Stial. [38]
residuals fall below 0.05%. The grid independence wadn@y be used as well to deal with turbulent separated flows in
tested first and then a grid of 168122 adopted in our com- Which cases separation and reattachment occur in company
putation. In the following, a table of the predicted reattach-Vith an adverse pressure gradient appearing in the boundary

ment points is given and then follow the figures of the skin'@Y®'-

friction coefficient (C;) distribution and the computed

streamlines based on the models I-VII, respectively. IV. CONCLUDING REMARKS
From Table | and Figs. 3, 4, 5, and 6, it is seen that the

present cubic modelgtl) and(42) have produced better re-

sults than do th_e previ_ously developed quadratic mo@8s Egs. (41) and (42), by making use of two objective deriva-
and(40). In particular, it appears that the present mad@®  es the Jaumann derivative and the Oldroyd derivative,

adopting the Oldroyd derivative predicts the reattaChme”Fespectively. Like the models of Pop8], Gatski and Spe-
point in closer agreement with the experiment than the pre-

diction by the model of Craft, Launder, and Syda]. How-
ever, it should be noted that, since in our computation the
standard wall function has been used, which usually applies
to turbulent attached flow such as the fully developed turbu-
lent channel flow, it would be better to develop the corre- 0.002
sponding low Reynolds number versions of the present cubic

w
[3)]

In this work, some history effects have been taken into
account to develop a nonline&-¢ model in the forms of

0.003

o e T T e e
e e e s
- —

TABLE I. Comparison of the predicted reattachment points with 4 494
the experimenf{24].

(&) |
Model Reattachment poirfk/H) o ° gﬁ: .
SKE 5.24 W [ LI Hoane (Oldroyd derivative) ]
Speziale 5.55 - — —=-CLS 1
Huang(Jaumann derivatiye 5.88 0001 — -~ Present (Oldroyd derivative)
Huang(Oldroyd derivative 6.04 i ]
CLS 6.11 - 1
Presen{Jaumann derivatiye 6.02 o-l . &'I> i |1l0| — |1l5| - |2l0- . |2l5| i Islol — I;S
Presen{Oldroyd derivative 6.21 x'H
Experiment 6.26

FIG. 4. Skin friction coefficient €distribution(Il).
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6. .7
6 Speziale

X/H Present (Jaumann rivaﬁve) x/H Present?OIdroyd derivative)

FIG. 5. Computed streamlingk). FIG. 6. Computed streamlingH ).

ziale [9], Shih, Zhu, and Lumley10], Craft, Launder, and the practical contribution and effectiveness of the mean spin
Suga[11], and others, this cubic model in the forms of Egs.tensorW in turbulence modeling. Furthermore, numerical
(41) and (42) is obviously frame-dependent, as can be seesimulations of a number of typical turbulent flows of practi-
from the involvement of the mean spin tensdt However, cal and scientific interest, e.g., the fully developed turbulent
both Eqgs(41) and(42) are but an approximation to the con- flow in an axially rotating pipgsee, e.g., Shiet al.[39] and
stitutive equation(6), at the complexity level op=1,m=1, Yang and Ma[40]) and the turbulent secondary flow in a
andn=0 of Eq.(4). In addition, since only one cubi%term, straightdtube of noncircular cross secti@see, e.g., Bradshaw

. 347 B ° 3.,4; 3 [41] and Huang and Rajagop@?2]), should be carried out in
I'e"o_%C#(K /e")[DW-WD] and 6C, (K e )[bW future work so as to test and then, perhaps, modify the
-WND], has been included into E¢1) and Eq.(42), respec- present models for possible broader applications, yet aiming
tively, it would be interesting to assess the contributions ofto further develop better closure models for turbulence.
those formally quadratic, cubic, and higher order terms that During the development of this new nonlind&re model
have been truncated from E@) while making the approxi- in the forms of Eqs(41) and(42), respectively, the Maxwell-
mations. Nevertheless, the improvement made by this cubi@n iteration methodsee Refs[2,17,19) has been used to
model over the nonlinear quadrati¢-e models given by make the relevant approximations to a rate-type closure
Huang[2] in predicting the time evolution of the turbulent model for the Reynolds streg6), as was done in Eq38);
kinetic energyK in homogeneous turbulent shear flow asthis method appears to be practically useful in developing the
well as in turbulent backward-facing step flow is further con-algebraic nonlinearK-¢ closure models for turbulence.
firmation, as has been shown by a number of previouslyMoreover, it should be noted that, in order to better capture
proposed quadratic and culdee models in the literature, of the complex turbulent phenomena, it is appropriate to appeal
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to more sophisticated models yet to be explored, say, a homesources than the computationally more feasible algebraic
linear K-e model containing more effective quadratic and nonlinearkK-¢ models.

cubic terms or a rate-type closure model capable of capturing
the relaxation effect of the Reynolds stress, which is akin to
the second ordgimomeny closure approach based on mod-  This work was supported by the National Natural Science
eling the Reynolds stress transport equation, although itsoundation of ChingGrant No. 90205002 We thank H.-J.
implementation in numerical simulations of turbulence at theChu and X.-D. Yang for assistance with the numerical com-

ACKNOWLEDGMENTS

present time requires a much greater amount of computgsutations.

[1] R. S. Rivlin, Q. Appl. Math.15, 212 (1957%).

[2] Y.-N. Huang, Commun. Nonlinear Sci. Numer. Sim@l. 543
(2004).

[3] S. Tavoularis and S. Corrsin, J. Fluid Mech04, 311(1981).

[4] H. W. Liepmann, inMéchanique de la Turbulenc€CNRS,

Paris, 1961

I. Proudman, J. Fluid Mech44, 563(1970.

J. L. Lumley, J. Fluid Mech41, 413(1970.

Y.-N. Huang and F. Durst, Phys. Rev. &, 056305(2001).

S. B. Pope, J. Fluid Mech72, 331(1975.

T. B. Gatski and C. G. Speziale, J. Fluid MecRh54, 59

(1993.

[10] T.-H. Shih, J. Zhu, and J. L. Lumley, Comput. Methods Appl.

Mech. Eng. 125, 287 (1995.

(5]
(6]
[7]
(8]
(9]

[11] T. J. Craft, B. E. Launder, and K. Suga, Int. J. Heat Fluid Flow

17, 108(1996.

[12] U. Schumann, Phys. Fluid0, 721 (1977.

[13] J. L. Lumley, Adv. Appl. Mech.18, 123(1978.

[14] C.-C. Wang, Arch. Ration. Mech. AnaB6, 166 (1970.

[15] G. F. Smith, Int. J. Eng. Sci9, 889(1970.

[16] A. J. M. Spencer, inContinuum Physics, ledited by A. C.
Eringen(Academic Press, New York, 19YIpp. 292-307.

[17] C. Truesdell, J. Ration. Mech. Anah, 55 (1956

[18] I. Miller and T. RuggeriRational Extended Thermodynamics
(Springer-Verlag, Berlin, 1998

[19] Y.-N. Huang, Ph.D. dissertation, University of Pittsburgh,
1994,

[20] B. E. Launder and D. B. Spalding, Comput. Methods Appl.
Mech. Eng.3, 269(1974).

[21] S. Tavoularis and U. Karnik, J. Fluid Mecl204, 457 (1989.

[24] D. M. Driver and H. L. Seegmiller, AIAA J23, 163(1985.

[25] L. Prandtl, Z. Angew. Math. Mech5, 136 (1925.

[26] J. Boussinesq, Mem. Prés. Div. Savants Acad. Sci. 2&,ig6
(1877).

[27] B. E. Launder and D. B. Spaldindg/athematical Models of
Turbulence(Academic Press, London, 1972

[28] J. Kim, P. Moin, and R. Moser, J. Fluid Mechl77, 133
(1987).

[29] C. G. Speziale, Annu. Rev. Fluid Mec23, 107 (1991).

[30] W. Rodi and N. N. Mansour, J. Fluid Mecl250, 509 (1993.

[31] N. Kasagi and N. Shikazono, Proc. R. Soc. London, Ser. A
451, 257 (1995.

[32] M. J. Lee, J. Kim, and P. Moin, J. Fluid Mech216, 561
(1990.

[33] Y.-N. Huang and F. Durst, Int. J. Heat Fluid Flo@2, 495
(2001).

[34] A. Yoshizawa, Phys. Rev. B9, 4065(1994.

[35] A. Matsumoto, Y. Nagano, and M. Tagawa,RPnoceedings of
the 5th Symposium on Computational Fluid Dynamics of the
Japan Society of Computational Fluid Dynamics, Toky@91,
pp. 361-364.

[36] C. G. Speziale, J. Fluid MechL78 459 (1987.

[37] J. H. Ferziger and M. Pé&¥i Computational Methods for Fluid
Dynamics Chap. 7(Springer-Verlag, Berlin, 1996

[38] T.-H. Shih, L. A. Povinelli, and N.-S. Liu, J. Turbul4, 15
(2003.

[39] T.-H. Shih, J. Zhu, W. W. Liou, K. H. Chen, N. S. Liu, and J.
L. Lumley, in Proceedings of the 11th Symposium on Turbu-
lent Shear Flows, Grenoble, Franc#997, pp. 31.1-31.6.

[22] M. M. Rogers, P. Moin, and W. C. Reynolds, Department of [40] X.-D. Yang and H.-Y. Ma, Int. J. Numer. Methods Fluidks,

Mechanical Engineering Technical Report No. TF-25, Stanford

University, 1986(unpublishegl
[23] X.-D. Yang, H.-Y. Ma, and Y.-N. Huang, Commun. Nonlinear
Sci. Numer. Simul(to be publisheyd

1355(2003.

[41] P. Bradshaw, Annu. Rev. Fluid Mecli9, 53 (1987).

[42] Y.-N. Huang and K. R. Rajagopal, Math. Models Meth. Appl.
Sci. 5, 111(1995.

036302-10



