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In this work, we develop a Reynolds stress model along the line of the approach presented by Huang
[Commun. Nonlinear Sci. Numer. Simul.9, 543 (2004)], aiming to assess the role and contribution of the
mean spin tensor in turbulence modeling. Here, the constitutive functional for the Reynolds stress depends on
the mean spin tensor as well as the mean stretching tensor and its Jaumann derivative, the turbulent kinetic
energyK, and the turbulent dissipation rate«, which is at the complexity level ofp=1,m=1, andn=0 of a
rate-type constitutive equation for the Reynolds stress proposed in the aforementioned paper. The explicit form
for the Reynolds stress is obtained with recourse to the representation theorem and the theory of invariants
developed in modern rational continuum mechanics, and, as an approximation, a nonlinear cubicK-« model is
worked out in which the model coefficients are analytically identified based on the experimental results of
Tavoularis and Corrsin[J. Fluid Mech.104, 311(1981)]. In addition, numerical results based on this model, in
the forms of employing the Jaumann derivative and the Oldroyd derivative, respectively, for homogeneous
turbulent shear flow and fully developed turbulent flow over a backward-facing step, are presented in com-
parison with those obtained based on a few previously proposed linear and nonlinearK-« models, showing
reasonably good agreement with the experimental results and the DNS data concerned and a better perfor-
mance than the previously developed quadratic models.

DOI: 10.1103/PhysRevE.70.036302 PACS number(s): 47.27.Eq, 46.05.1b, 47.27.Jv, 47.27.Nz

I. INTRODUCTION

In a note Rivlin[1] pointed out that there exists an anal-
ogy between the constitutive equation for the turbulent flows
of a Newtonian fluid and that for the laminar flows of non-
Newtonian fluids. Indeed, as seen over the past four decades,
a great deal of research concerned indicates that in many
aspects the turbulent flow of a Newtonian fluid behaves like
non-Newtonian fluids, e.g., showing nonlinear viscoelasticity
and fading memory of its own history(see, e.g., Huang[2],
Tavoularis and Corrsin[3], Liepmann [4], and Proudman
[5]). However, there were controversies concerning the va-
lidity of the principle of material frame-indifference in con-
tinuum mechanics when applied to turbulence modeling. By
examining a steady homogeneous turbulent plane strain in a
steadily rotating framework based on a second-order closure
model, Lumley[6] showed that the effect of rotation on the
Reynolds stress is serious and concluded that the principle of
material frame-indifference is dramatically violated in turbu-
lence and thus should be discarded in turbulence modeling.
Recently, in a work aiming to clarify and set straight the
controversies concerned in modeling the Reynolds stress, it
has been shown by Huang and Durst[7] that, due to being
subjected to thedynamical processinduced adscititiously
from taking the ensemble average on the Navier-Stokes
equations, in fact, the invariance group of the Reynolds
stress is the extended Galilean group of transformations

rather than the Euclidean group of transformations as taken
before from the perspective of kinematics analysis; and, as a
result, unlike modeling the non-Newtonian fluids in which
case the constitutive equations exclude the spin tensor from
being a constitutive variable in accord with the principle of
material frame-indifference in continuum mechanics, the
frame-dependent kinematical quantities, e.g., the mean spin
tensor, may be allowed to play an effective role in turbulence
modeling. Therefore, in the sense of being in conformity
with the averaged Navier-Stokes equations, a number of tur-
bulence closure models proposed hitherto, for examples, the
model of Pope[8], the model of Gatski and Speziale[9], the
model of Shihet al. [10], and the model of Craftet al. [11],
are all physically justified to include themean spin tensoras
a constitutive argument. Of course, there are relevant math-
ematical constraints to be observed, such as the realizability
(see Schumann[12] and Lumley[13]).

In this work, we shall develop a Reynolds stress model
involving the mean spin tensor along the line of the approach
presented in Huang[2], to further assess the role and contri-
bution of the mean spin tensor in turbulence modeling. To
this end, here, we consider a constitutive equation for the
Reynolds stresst that depends ont̊—the Jaumann derivative
of the Reynolds stress, the mean stretching tensorD and its

Jaumann derivativeD̊, and the mean spin tensorW, along
with the turbulent kinetic energyK and the turbulent dissi-
pation rate«. With recourse to the representation theorem
and the theory of invariants developed in modern continuum
mechanics(see Wang[14], Smith [15], and Spencer[16]),
the explicit form of this constitutive equation is obtained
and, furthermore, an approximate form is worked out in
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which the model coefficients are identified based on the ex-
perimental results of Tavoularis and Corrsin[3]. In addition,
to evaluate the role and contribution of the mean spin tensor
in turbulence modeling, the numerical calculations based on
this new nonlinearK-« model in the forms of using the Jau-
mann derivative and the Oldroyd derivative, respectively, for
homogeneous turbulent shear flow and fully developed tur-
bulent flow over a backward-facing step will be presented in
comparison with those obtained by employing a few previ-
ously proposedK-« models.

II. A CONSTITUTIVE EQUATION FOR THE REYNOLDS
STRESS INVOLVING THE MEAN SPIN TENSOR

A. Theoretical background

We consider the turbulent flows of an incompressible
Newtonian fluid. The mean continuity equation and the
Reynolds-averaged Navier-Stokes equations read, respec-
tively,

divv̄ = 0, s1d

%
Dv̄

Dt
= divsT − %td + %B, s2d

where an overbar represents the mean value of ensemble
average,% is the mass density(constant), B is the prescribed
body force density,D /Dt denotes the material time deriva-
tive associated with the mean velocity fieldv̄, T =−p̄1
+2mD, wherein1 is the unit tensor,D= 1

2fgradv̄+sgradv̄dTg is
the mean stretching tensor,p̄ is the mean pressure,m is the
viscosity, andt : =v8 ^ v8 is the Reynolds stress tensor, the
modeling of which leads to the so-calledclosure problemin
turbulence modeling.

Here, we follow the approach presented by Huang[2] to
establish a constitutive equation for the Reynolds stresst
involving themean spin tensorW—its constitutive equation
takes the form

t =Fst̊,D,D̊,W ;K,«d, s3d

whereF is the constitutive functional, ˚ denotes the Jau-

mann derivative, t̊=Dt /Dt+tW −Wt, D̊=DD /Dt+DW
−WD andW = 1

2fgradv̄−sgradv̄dTg.

Equation(3) is a special case of a rate-type constitutive
equation for the Reynolds stress proposed in Ref.[2], which
reads

Rst,t̊1, . . . ,t̊p;D,D̊1, . . . ,D̊m;W,W̊1, . . . ,W̊n;K,«d = 0,

s4d

i.e., at thecomplexity levelof p=1,m=1, andn=0, where
R is the constitutive functional.

Note that the constitutive equation(3) takes into account
some history effects of both the Reynolds stresst and the
mean stretching tensorD, e.g., the relaxation effect of the
Reynolds stress, by containing their Jaumann derivatives as
constitutive variables. Clearly, with the mean spin tensor
W ’s being taken to be a constitutive variable, the constitutive
equation(3) includes as a special case the constitutive equa-
tion investigated in Ref.[2], which is

t =Lst̊,D,D̊;K,«d. s5d

It should be noted that, in the paper[2] on modeling the
Reynolds stress in the context of continuum mechanics, it
has been stressed that, although it was pointed out by Rivlin
[1] that there exists a similarity between the constitutive
equation for the turbulent flows of a Newtonian fluid and that
for the laminar flows of non-Newtonian fluids, in reality,
generally speaking, modeling the Reynolds stress appears to
be much more involved and more complicated than model-
ing the Cauchy stress in the sense that the frame-dependent
kinematical quantities, e.g., the mean spin tensor, may be
allowed to play an effective role(see Refs.[2,6–8]) in tur-
bulence modeling, whereas in modeling the Cauchy stress of
a non-Newtonian fluid the frame-dependent kinematical
quantities, such as the spin tensor, are excluded from being
the constitutive variables to be in accordance with the prin-
ciple of material frame-indifference in continuum mechanics.

B. The explicit form of the model and its approximations

By making use of the representation theorem and the
theory of invariants of Wang[14], Smith [15], and Spencer
[16], we obtain the following irreducible explicit form for
the constitutive equation(3):

t =Fst̊,D,D̊,W ;K,«d

= a01 + a1t̊ + a2D + a3D̊ + b1st̊d2 + b2D
2 + b3sD̊d2 + b4W

2 + c1ft̊D + Dt̊g + c2fst̊d2D + Dst̊d2g

+ c3ft̊D2 + D2t̊g + c4fst̊d2D2 + D2st̊d2g + d1ft̊D̊ + D̊t̊g + d2fst̊d2D̊ + D̊st̊d2g + d3ft̊sD̊d2 + sD̊d2t̊g + d4fst̊d2sD̊d2 + sD̊d2st̊d2g

+ e1fDD̊ + D̊Dg + e2fD2D̊ + D̊D2g + e3fDsD̊d2 + sD̊d2Dg + e4fD2sD̊d2 + sD̊d2D2g + f1ft̊W − W t̊g + f2fW t̊Wg

+ f3fst̊d2W − Wst̊d2g + f4fWst̊d2Wg + f5fW t̊W2 − W2t̊Wg + g1fDW − WDg + g2fWDW g + g3fD2W − WD2g

+ g4fWD2Wg + g5fWDW 2 − W2DWg + h1fD̊W − WD̊g + h2fWD̊Wg + h3fsD̊d2W − WsD̊d2g + h4fWsD̊d2Wg

+ h5fWD̊W2 − W2D̊Wg, s6d
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where the coefficientsa0,a1,a2, . . . ,h4, and h5 are functions ofK and « as well as the following invariants(note that

trD=trD̊=0):

trt̊ = 2DK/Dt,trst̊d2,trD2,trsD̊d2,trst̊d3,trD3,trsD̊d3,trW2,trft̊Dg,trfst̊d2Dg,trft̊D2g,trfst̊d2D2g,trft̊D̊g,trfst̊d2D̊g,trft̊sD̊d2g,

trfst̊d2sD̊d2g,trfDD̊g,trfD2D̊g,trfDsD̊d2g,trfD2sD̊d2g,trft̊W2g,trfst̊d2W2g,trfst̊d2W2t̊Wg,trfDW2g,trfD2W2g,trfD2W2DWg,

trfD̊W2g,trfsD̊d2W2g,trfsD̊d2W2D̊Wg,trft̊DD̊g,trft̊DWg,trfst̊d2DWg,trft̊D2Wg,trft̊W2DWg,trft̊D̊Wg,trfst̊d2D̊Wg,

trft̊sD̊d2Wg,trft̊W2D̊Wg,trfDD̊Wg,trfD2D̊Wg,trfDsD̊d2Wg,trfDW2D̊Wg. s7d

It is clear that at the present time it is certainly impossible
and also unrealistic to identify all the coefficients
a0,a1,a2, ... ,h4, andh5 appearing in Eq.(6), which are func-
tions of the invariants listed in Eq.(7) as well asK and «,
based on the presently available experimental results and the
DNS data for turbulence. Thus, we are content with working
out an approximate form to Eq.(6) so that it can be practi-
cally applied to turbulence modeling.

To this end, first, let us consider the following process of
approximation. We shall neglect those terms(I) which are

nonlinear int̊ andD̊; (II ) which are cubic or of higher order

in form involving t̊ ,D ,D̊, and W; and (III ) the quadratic
terms involvingt̊, namely, only the linear term oft̊ is con-
sidered here. Consequently, we arrive at the following ap-
proximate form for Eq.(6):

t = a01 + a1t̊ + a2D + b2D
2 + b3sD̊d2 + b4W

2 + e1fDD̊ + D̊Dg

+ g1fDW − WDg + h1fD̊W − WD̊g. s8d

Second, here, we shall apply an approximation technique
akin to the so-called Maxwellian iteration as done by Huang
[2]. In fact, this method was introduced by Truesdell[17] in
his studies of kinetic theory of gases and given the name;
later, it was used in extended thermodynamics(see Müller
and Ruggeri[18]) and introduced to turbulence modeling
(see Refs.[2,19]). Thus, we substitute the standardK-«
model (see Launder and Spalding[20])

t =
2K

3
1 − 2Cm

K2

«
D, s9d

whereCm=0.09, into the right hand side of Eq.(8) for t̊ to

arrive at(note that1̊=0)

t = a01 + a1F2K

3
1 − 2Cm

K2

«
DG

˚

+ a2D + a3D̊ + b2D
2 + b4W

2

+ e1fDD̊ + D̊Dg + g1fDW − WDg + h1fD̊W − WD̊g

= Sa0 +
2

3
K̇a1D1 + a2D + b2D

2 + Sa3 − 2Cm

K2

«
DD̊

+ 2Cma1
K2«̇ − 2KK̇«

«2 D + b4W
2 + e1fDD̊ + D̊Dg

+ g1fDW − WDg + h1fD̊W − WD̊g, s10d

where for simplicity in notation and without confusion, here-
inafter, an overdot is also used to denote the material time
derivativeD /Dt associated with the mean velocity fieldv̄.

Note that in Eq.(10) the coefficientsa0,a1,a2,a3, b4,e1,
andh1 are functions of the invariants listed in Eq.(7), K and
«, and are independent of one another. Therefore, Eq.(10)
can be written as

t = a01 + a1D + a2D
2 + a3D̊ + a4

K2«̇ − 2KK̇«

«2 D + a5W
2

+ a6fDW − WDg + a7fD̊W − WD̊g + a8fDD̊ + D̊Dg,

s11d

wherea0,a1,a2, . . . ,a7, anda8 are functions ofK, « and the
invariants listed in Eq.(7).

Taking contraction on Eq.(11) and observing that trD
=trD̊=0, we have

trt = 2K = 3a0 + a2trD
2 + a5trW

2 + 2a8trsDD̊d. s12d

On substitution of Eq.(12) into Eq. (11), it follows that

t =
2K

3
1 + a1D + a2FD2 −

1

3
trsD2d1G + a3D̊

+ a4
K2«̇ − 2KK̇«

«2 D + a5FW2 −
1

3
trsW2d1G + a6fDW

− WDg + a7fD̊W − WD̊g + a8FDD̊ + D̊D −
2

3
trsDD̊d1G .

s13d

In addition, dimensional analysis gives
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a1 = b1
K2

«
, a2 = b2

K3

«2 , a3 = b3
K3

«2 ,

a4 = b4
K

«
, a5 = b5

K3

«2 , a6 = b6
K3

«2 ,

a7 = b7
K4

«3 , a8 = b8
K4

«3 . s14d

With Eq. (14), now Eq.(13) reads

t =
2K

3
1 + b1

K2

«
D + b2

K3

«2FD2 −
1

3
trsD2d1G + b3

K3

«2 D̊

+ b4
K2

«3 sK«̇ − 2K̇«dD + b5
K3

«2FW2 −
1

3
trsW2d1G

+ b6
K3

«2 fDW − WDg + b7
K4

«3 fD̊W − WD̊g

+ b8
K4

«3FDD̊ + D̊D −
2

3
trsDD̊d1G , s15d

where the dimensionless coefficientsb1,b2, ... ,b7, and b8
are functions ofK, «, and the invariants listed in Eq.(7).

Recall that a nonlinearK-« model was developed as one
example to illustrate the general approach to modeling the
Reynolds stress by Huang[2], which is

t =
2K

3
1 − 2Cm

K2

e
D + g1Cm

2 K3

e2 FD2 −
1

3
trsD2d1G − g2Cm

2 K3

e2 D̊

− g3Cm

K2

e3 sKė − 2K̇edD, s16d

where Cm=0.09, g1=2.896, g2=2.784, andg3=0.843. The
coefficientsg1,g2, andg3 were analytically identified based
on the averaged values of the experimental results of Tavou-
laris and Corrsin[3], Tavoularis and Karnik[21], and the
DNS data of Rogerset al. [22]. The numerical calculations
based on thisquadraticmodel given in Ref.[2] for homoge-
neous turbulent shear flow and fully developed turbulent
flow over a backward-facing step(see Yanget al. [23]) are
comparable with those obtained by employing the model of
Shih, Zhu, and Lumley[10] and that of Craft, Launder, and
Suga[11], showing a reasonably good agreement with the
experimental results of the Reynolds stresses given in Driver
and Seegmiller[24], except in the region near the reattach-
ment point in backward-facing step flow.

It is evident that to include Eq.(16) as a special case we
can simply set in Eq.(15)

b1 = − 2Cm, b2 = g1Cm
2, b3 = − g2Cm

2, b4 = − g3Cm

s17d

to obtain

t =
2K

3
1 − 2Cm

K2

e
D + g1Cm

2 K3

e2 FD2 −
1

3
trsD2d1G − g2Cm

2 K3

e2 D̊

− g3Cm

K2

e3 sKė − 2K̇edD + b5
K3

«2FW2 −
1

3
trsW2d1G

+ b6
K3

«2 fDW − WDg + b7
K4

«3 fD̊W − WD̊g

+ b8
K4

«3FDD̊ + D̊D −
2

3
trsDD̊d1G . s18d

In the following, we shall determine the coefficients
b5,b6,b7, andb8 according to the experimental results.

C. Identification of the model coefficients

Ever since Prandtl[25] put forth his pioneering mixing-
length theory in which for the first time the notion of eddy
viscosity introduced by Boussinesq[26] was found of prac-
tical application in turbulence modeling, the workers in tur-
bulence modeling have been facing the arduous tasks in
identifying the model coefficients for their proposed
models—the process of which is usually a painstaking inter-
play between the theory and the relevant well-devised ex-
periments(see, e.g., Launder and Spalding[27], Gatski and
Speziale[9], and Shihet al. [10]). With the rapid develop-
ment of the supercomputers as witnessed in the past two
decades, the direct numerical simulation, although still very
costly even for relatively low or moderate Reynolds number
turbulence simulation at the present stage and also having its
own difficulties, now, however, plays a more and more im-
portant role in turbulence modeling and provides a valuable
means that helps to determine the model coefficients appear-
ing in such as the two-equationK-« (low Reynolds number)
models and in the so-called large-eddy simulation of turbu-
lence (see, e.g., Kimet al. [28], Speziale[29], Rodi and
Mansour[30], and Kasagi and Shikazono[31]).

Now let us consider the following form of Eq.(15), which
includes Eq.(16) as a special case, namely:

t =
2K

3
1 + b1

K2

«
D + b2

K3

«2FD2 −
1

3
trsD2d1G + b3

K3

«2 D̊

+ b4
K2

«3 sK«̇ − 2K̇«dD + b5
K3

«2FW2 −
1

3
trsW2d1G

+ b6
K3

«2 fDW − WDg + b7
K4

«3 fD̊W − WD̊g

+ b8
K4

«3FDD̊ + D̊D −
2

3
trsDD̊d1G , s19d

where b1=−2Cm, b2=g1Cm
2 =2.896Cm

2, b3=−g2Cm
2 =

−2.784Cm
2, b4=−g3Cm=−0.843Cm, b5, b6, b7, andb8 are to

be determined.
Here, we shall adopt the experimental results of the fully

developed homogeneous turbulent shear flow in Tavoularis
and Corrsin[3] to identify the coefficientsb5,b6,b7, andb8.

However, since in homogeneous turbulent shear flowDD̊
+D̊D reduces toD2W +WD2=0 (note thatḊ=0), the coef-
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ficient b8 is thus not determinable at the moment with the
above-mentioned experimental results and will be left for
determination in future work. Therefore, we shall consider

t =
2K

3
1 + b1

K2

«
D + b2

K3

«2FD2 −
1

3
trsD2d1G + b3

K3

«2 D̊

+ b4
K2

«3 sK«̇ − 2K̇«dD + b5
K3

«2FW2 −
1

3
trsW2d1G

+ b6
K3

«2 fDW − WDg + b7
K4

«3 fD̊W − WD̊g. s20d

Note that the anisotropy stress tensor is defined asa:
=ft−s2K /3d1g /2K. Then Eq.(20) can be written as

a =
b1

2

K

«
D +

b2

2

K2

«2FD2 −
1

3
trsD2d1G +

b3

2

K2

«2 D̊

+
b4

2

K

«3sK«̇ − 2K̇«dD +
b5

2

K2

«2FW2 −
1

3
trsW2d1G

+
b6

2

K2

«2 fDW − WDg +
b7

2

K3

«3 fD̊W − WD̊g. s21d

Let us consider the fully developed homogeneous turbu-
lent shear flow, in which the gradient of the mean velocity
field

sgradv̄d = 10 S 0

0 0 0

0 0 0
2 , s22d

whereS=const. It follows that the mean stretching tensor

sDd = 1 0 S/2 0

S/2 0 0

0 0 0
2 , s23d

and the mean spin tensor

sWd = 1 0 S/2 0

− S/2 0 0

0 0 0
2 . s24d

Here, it is worth noting that the work of Leeet al. [32]
reveals interesting similarities in statistical correlations and
instantaneous structures between the viscous sublayer of(in-
homogeneous) turbulent channel flow and thehomogenous
turbulent shear flow at high shear rate.

The asymptotic values of homogeneous turbulent shear
flow in Tavoularis and Corrsin[3] are as follows:

a11
` = 0.197, a12

` = − 0.140, a22
` = − 0.143,

SSK

«
D

`

= 6.25. s25d

In homogeneous turbulent shear flow, by Eq.(21), we have
for the anisotropy shear stressa12

a12 = −
b1

4
SKS

«
D +

b4

2

K

«3sK«̇ − 2K̇«d
S

2
−

b7

4
SKS

«
D3

= −
Cm

2
SKS

«
D +

b4

4
Fa12s4 − 2C«1dSKS

«
D2

+ s2 − C«2dSKS

«
DG −

b7

4
SKS

«
D3

, s26d

in which Eqs.(34) and (35), in this case reduced to

K̇ = − 2KSa12 − «, s27ad

«̇ = − 2C«1«Sa12 − C«2
«2

K
, s27bd

have been used.
Taking the asymptotic value of Eq.(26) then yields

a12
` = −

Cm

2
SKS

«
D

`

+
b4

4
Fa12

` s4 − 2C«1dSKS

«
D

`

2

+ s2 − C«2d

3SKS

«
D

`
G −

b7

4
SKS

«
D

`

3

, s28d

whereCm=0.09,C«1=1.44, andC«2=1.92.
In addition, it follows from Eq.(21) that

a11
` =

b2

24
SKS

«
D

`

2

−
b3

4
SKS

«
D

`

2

−
b5

24
SKS

«
D

`

2

−
b6

4
SKS

«
D

`

2

,

s29d

a22
` =

b2

24
SKS

«
D

`

2

+
b3

4
SKS

«
D

`

2

−
b5

24
SKS

«
D

`

2

+
b6

4
SKS

«
D

`

2

.

s30d

By Eq. (25) together with Eqs.(28)–(30), and noting that
b2=g1Cm

2 =2.896Cm
2, b3=−g2Cm

2 =−2.784Cm
2, b4=−g3Cm=

−0.843Cm, we obtain

b5 = g4Cm
2 = 0.8482Cm

2, b6 = g5Cm
2 = 0.6344Cm

2 ,

b7 = − g6Cm
2 = − 0.7767Cm

3 . s31d

Finally, we arrive at the following nonlinearK-« model
which adopts the Jaumann derivative:

t =
2K

3
1 + b1

K2

«
D + b2

K3

«2FD2 −
1

3
trsD2d1G + b3

K3

«2 D̊

+ b4
K2

«3 sK«̇ − 2K̇«dD + b5
K3

«2FW2 −
1

3
trsW2d1G

+ b6
K3

«2 fDW − WDg + b7
K4

«3 fD̊W − WD̊g, s32d

where b1=−2Cm, b2=g1Cm
2 =2.896Cm

2, b3=−g2Cm
2 =

−2.784Cm
2, b4=−g3Cm=−0.843Cm, b5=g4Cm

2 =0.8482Cm
2, b6

=g5Cm
2 =0.6344Cm

2, and b7=−g6Cm
3 =−0.7767Cm

3. Note that,

due to the involvement ofD̊, the Jaumann derivative ofD,
the last term is in fact a cubic term.
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Moreover, if the Jaumann derivative is replaced by the
Oldroyd derivative, then, after going through the same pro-
cedure as above based on the experimental results of Tavou-
laris and Corrsin[3], we arrive at the following model which
extends the one given by Huang[2] to include the contribu-
tion of the mean spin tensorW:

t =
2K

3
1 + b1

K2

«
D + b2

K3

«2FD2 −
1

3
trsD2d1G + b3

K3

«2FD
L

−
1

3
trsD

L

d1G + b4
K2

«3 sK«̇ − 2K̇«dD + b5
K3

«2FW2

−
1

3
trsW2d1G + b6

K3

«2 fDW − WDg + b7
K4

«3 fD
L

W − WD
L

g,

s33d

where b1=−2Cm, b2=−4s1Cm
2 =−8.012Cm

2, b3=−4s2Cm
2

=−5.568Cm
2, b4=−s3Cm=−0.843Cm, b5=s4Cm

2 =1.075Cm
2,

b6=s5Cm
2 =3.419Cm

2, and b7=−s6Cm
3 =−0.7767Cm

3. Here,

L denotes the Oldroyd derivative;D
L

=DD /Dt−sgradv̄dD

−Dsgradv̄dT. As in Eq.(32), because of the involvment ofD
L

,
the last term is in fact a cubic term as well.

III. NUMERICAL RESULTS OF TWO BENCHMARK
TURBULENT FLOWS

In the following numerical calculations, the conventional
modeledK equation and« equation will be used, which are

K̇ = − ti j
] v̄i

] xj
− « +

]

] xi
S nT

sK

] K

] xi
D + n¹2K, s34d

«̇ = − C«1
«

K
ti j

] v̄i

] xj
− C«2

«2

K
+

]

] xi
S nT

s«

] «

] xi
D + n¹2«,

s35d

where nT=CmK2/« ,Cm=0.09,C«1=1.44,C«2=1.92,sK=1.0,
ands«=1.3. However, it should be noted that modeling the«
equation, due to having more unknown terms that need to be
modeled, thus, poses more severe difficulties than modeling
the K equation, which is not only the trace of the Reynolds
stress transport equation but also, importantly, a direct con-
sequence of the first law of thermodynamics as shown in
Huang and Durst[33]. In fact, both Eq.(34) and Eq.(35),
especially the latter, need to be modified so as to better pre-
dict the complex turbulent flows(see, e.g., Launder and
Spalding[27], Speziale[29], and Yoshizawa[34]). Although
this is not our main concern in this work, we should keep in
mind that, if any modifications were made to the conven-
tional modeledK equation(34) and« equation(35), all the
coefficients appearing in the models(15) and(16) should be
reidentified correspondingly according to the experimental
results.

We shall carry out numerical calculations based on seven
linear and nonlinearK-« models and make a comparison
with the experimental results of fully developed turbulent
flow over a backward-facing step in Driver and Seegmiller

[24] as well as the DNS data of homogeneous turbulent shear
flow in Matsumotoet al. [35], respectively.

(I) The standardK-« model (SKE) [20]:

t =
2K

3
1 − 2Cm

K2

«
D, s36d

whereCm=0.09.
(II ) The nonlinear quadraticK-« model of Speziale[36]:

t =
2K

3
1 − 2Cm

K2

«
D + 4CDCm

2 K3

«2FD2 −
1

3
trsD2d1G

+ 4CECm
2 K3

«2FD
L

−
1

3
trsD

L

d1G , s37d

where Cm=0.09, CD=CE=1.68, and D
L

=Ḋ−sgradv̄dD
−Dsgradv̄dT is the Oldroyd derivative ofD.

(III ) The nonlinear cubic model of Craft, Launder, and
Suga(CLS) [11]:

t =
2K

3
1 − 2C̃m

K2

«̃
D + b1

K3

«̃2FD2 −
1

3
trsD2d1G + b2

K3

«̃2 sWD

− DWd + b3
K3

«̃2FW2 −
1

3
trsW2d1G − g1

K4

«̃3 trsD2dD

− g2
K4

«̃3 trsW2dD − g3
K4

«̃3FW2D + DW2 −
2

3
trsW2Dd1G

− g4
K4

«̃3 sWD2 − D2Wd, s38d

where«̃ is the isotropic dissipation rate.

C̃m =
0.3h1 − expf− 0.36/exps− 0.75hdgj

1 + 0.35h3/2 , h = maxsS̃,Ṽd,

in which

S̃= sK/«̃df2trsD2dg1/2, Ṽ = sK/«̃df− 2trsW2dg1/2,

and b1=−0.4C̃m, b2=0.4C̃m, b3=−1.04C̃m, g1=g2=40.0C̃m
3,

g3=0, andg4=−80.0C̃m
3. Note that, sinceg3=0, the cubic

term with sW2D+DW2d in fact makes no contribution in
numerical simulations.

(IV ) A nonlinear quadraticK-« model (using the Jau-
mann derivative) given by Huang[2]:

t =
2K

3
1 − 2Cm

K2

e
D + g1Cm

2 K3

e2 FD2 −
1

3
trsD2d1G − g2Cm

2 K3

e2 D̊

− g3Cm

K2

e3 sKė − 2K̇edD, s39d

whereCm=0.09,g1=2.896,g2=2.784, andg3=0.843.
(V) A nonlinear quadraticK-« model(using the Oldroyd

derivative) given by Huang[2]:
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t =
2K

3
1 − 2Cm

K2

«
D − 4s1Cm

2 K3

«2FD2 −
1

3
trsD2d1G

− 4s2Cm
2 K3

«2FD
L

−
1

3
strD

L

d1G − s3Cm

K2

«3 sK«̇ − 2K̇«dD,

s40d

whereCm=0.09,s1=2.003,s2=1.392,s3=0.843.
(VI ) The present model employing the Jaumann deriva-

tive:

t =
2K

3
1 − 2Cm

K2

«
D + g1Cm

2 K3

«2FD2 −
1

3
trsD2d1G − g2Cm

2 K3

«2 D̊

− g3Cm

K2

«3 sK«̇ − 2K̇«dD + g4Cm
2 K3

«2FW2 −
1

3
trsW2d1G

+ g5Cm
2 K3

«2 fDW − WDg − g6Cm
3 K4

«3 fD̊W − WD̊g, s41d

where Cm=0.09,g1=2.896, g2=2.784, g3=0.843, g4
=0.8482,g5=0.6344, andg6=0.7767.Clearly, this model
has generalized, in the sense of refining, the models39d to
be in cubic order by including the contributions ofthe
mean spin tensorW.

sVII d The present model employing the Oldroyd deriva-
tive:

t =
2K

3
1 − 2Cm

K2

«
D − 4s1Cm

2 K3

«2FD2 −
1

3
trsD2d1G

− 4s2Cm
2 K3

«2FD
L

−
1

3
strD

L

d1G − s3Cm

K2

«3 sK«̇ − 2K̇«dD

+ s4Cm
2 K3

«2FW2 −
1

3
trsW2d1G + s5Cm

2 K3

«2 fDW − WDg

− s6Cm
3 K4

«3 fD
L

W − WD
L

g, s42d

where Cm=0.09, s1=2.003, s2=1.392, s3=0.843, s4
=1.075, s5=3.419, ands6=0.7767. Here, L denotes the

Oldroyd derivative, D
L

=DD /Dt−sgradv̄dD−Dsgradv̄dT.
Clearly, Eq.s42d includes Eq.s40d as a special case.

A. Homogeneous turbulent shear flow

It has been well recognized that the homogeneous turbu-
lent shear flow is a simple but critical test case for any newly
proposed model to better capture the complex turbulent
flows encountered in engineering practice. Here, the fourth-
order Runge-Kutta method has been used to calculate the
evolution of the turbulent kinetic energyK with the dimen-
sionless timet* =St (also called thetotal shear), whereS is
the mean shear rate. The numerical results based on the
above models are presented in Fig. 1 in comparison with the
DNS data of Matsumotoet al. [35] (note that the mean shear
given by Matsumotoet al. [35] is S=]U /]y=30 s−1, whereas
in the experiments of Tavoularis and Corrsin[3]
S=46.8 s−1). The initial condition of K0=10.148 05 and
«0=62.8489 att* =1 is taken from the DNS data of Matsu-
moto et al. [35].

It is seen from Fig. 1 that the result obtained based on the
present model shows a good improvement over that pre-
dicted by the model of Huang[2] and, in addition, in a good
agreement with the trend of the DNS data, a bit better than
the result predicted by the model of Craft, Launder, and Suga
[11]. Since in this case the anisotropy shear stressa12 is the
only stress that contributes to modeling the time evolution of
the turbulent kinetic energyK, as can be seen from Eqs.
(27a) and(27b), the present models(41) and(42), giving rise
to the samea12, produce the same result for the time evolu-
tion of K. It is interesting to observe that, in this case, in the
cubic model of Craft, Launder, and Suga[11], the linear term

with C̃m actually is the only term that contributes to model-
ing a12, whereas in the present cubic model(41), the cubic
term with coefficientg6 combines the linear terms with co-
efficientsCm andg3 to make a joint contribution to modeling
the anisotropy shear stressa12; and, similarly, the cubic
model (42), which employs a different objective derivative,
the Oldroyd derivative, does the same in this regard.

B. Fully developed turbulent flow over a backward-facing step

The fully developed turbulent flow over a backward-
facing step, especially with a high ratio of the step height to
the tunnel exit height, is another benchmark test case for the
accuracy of the closure models in predicting the reattach-
ment location and the skin friction coefficient distribution
along the tunnel. In this case(see Fig. 2), we shall carry out
the corresponding numerical calculations based on the above
seven linear and nonlinearK-« models(I–VII ) and compare
the results with the experiments of Driver and Seegmiller
[24], in which the geometry has a step heightsHd to tunnel
exit height ratio of 1:9 and the Reynolds number based on
the step height and the experimental reference free-stream
velocity is 37423.

Here, the same code based on the finite volume method
with nonorthogonal grids(see, e.g.,[37]) has been used in

FIG. 1. Time evolution of the turbulent kinetic energyK.
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our computation. Variable storage is colocated and cell-
centered, with Rhie-Chow interpolation for cell-face mass
fluxes. TheSIMPLE pressure-correction algorithm is used to
obtain the pressure field. The convection and diffusion terms
of all the equations, including the mean momentum equa-
tions and the modeled transport equations for turbulence
quantities, are approximated by the second-order central dif-
ferencing scheme. In addition, the deferred correction tech-
nique is used for the discretization of the convection term.
Stone’s (strongly implicit procedure) method is employed
with under-relaxation factors and, in order to stabilize the
iteration, a time marching process has been adopted. Conver-
gence is judged by monitoring the magnitude of the absolute
residual sources of mass and momentum, normalized by the
respective inlet fluxes. The iteration is continued until all the
residuals fall below 0.05%. The grid independence was
tested first and then a grid of 1683122 adopted in our com-
putation. In the following, a table of the predicted reattach-
ment points is given and then follow the figures of the skin
friction coefficient sCfd distribution and the computed
streamlines based on the models I–VII, respectively.

From Table I and Figs. 3, 4, 5, and 6, it is seen that the
present cubic models(41) and(42) have produced better re-
sults than do the previously developed quadratic models(39)
and(40). In particular, it appears that the present model(42)
adopting the Oldroyd derivative predicts the reattachment
point in closer agreement with the experiment than the pre-
diction by the model of Craft, Launder, and Suga[11]. How-
ever, it should be noted that, since in our computation the
standard wall function has been used, which usually applies
to turbulent attached flow such as the fully developed turbu-
lent channel flow, it would be better to develop the corre-
sponding low Reynolds number versions of the present cubic

models(41) and (42) (see, e.g., Rodi and Mansour[30]), so
that they can be feasibly applied to modeling complex turbu-
lent flows. In addition, ageneralizedwall function for three-
dimensional turbulence recently proposed by Shihet al. [38]
may be used as well to deal with turbulent separated flows in
which cases separation and reattachment occur in company
with an adverse pressure gradient appearing in the boundary
layer.

IV. CONCLUDING REMARKS

In this work, some history effects have been taken into
account to develop a nonlinearK-« model in the forms of
Eqs. (41) and (42), by making use of two objective deriva-
tives, the Jaumann derivative and the Oldroyd derivative,
respectively. Like the models of Pope[8], Gatski and Spe-

FIG. 2. Schematic of the turbulent flow over a backward-facing
step.

TABLE I. Comparison of the predicted reattachment points with
the experiment[24].

Model Reattachment pointsx/Hd

SKE 5.24

Speziale 5.55

Huang(Jaumann derivative) 5.88

Huang(Oldroyd derivative) 6.04

CLS 6.11

Present(Jaumann derivative) 6.02

Present(Oldroyd derivative) 6.21

Experiment 6.26

FIG. 3. Skin friction coefficient Cf distribution (I).

FIG. 4. Skin friction coefficient Cf distribution (II ).
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ziale [9], Shih, Zhu, and Lumley[10], Craft, Launder, and
Suga[11], and others, this cubic model in the forms of Eqs.
(41) and (42) is obviously frame-dependent, as can be seen
from the involvement of the mean spin tensorW. However,
both Eqs.(41) and(42) are but an approximation to the con-
stitutive equation(6), at the complexity level ofp=1,m=1,
andn=0 of Eq. (4). In addition, since only one cubic term,

i.e., −g6Cm
3sK4/«3dfD̊W −WD̊g and −s6Cm

3sK4/«3dfD
L

W

−WD
L

g, has been included into Eq.(41) and Eq.(42), respec-
tively, it would be interesting to assess the contributions of
those formally quadratic, cubic, and higher order terms that
have been truncated from Eq.(6) while making the approxi-
mations. Nevertheless, the improvement made by this cubic
model over the nonlinear quadraticK-« models given by
Huang [2] in predicting the time evolution of the turbulent
kinetic energyK in homogeneous turbulent shear flow as
well as in turbulent backward-facing step flow is further con-
firmation, as has been shown by a number of previously
proposed quadratic and cubicK-« models in the literature, of

the practical contribution and effectiveness of the mean spin
tensor W in turbulence modeling. Furthermore, numerical
simulations of a number of typical turbulent flows of practi-
cal and scientific interest, e.g., the fully developed turbulent
flow in an axially rotating pipe(see, e.g., Shihet al. [39] and
Yang and Ma[40]) and the turbulent secondary flow in a
straight tube of noncircular cross section(see, e.g., Bradshaw
[41] and Huang and Rajagopal[42]), should be carried out in
future work so as to test and then, perhaps, modify the
present models for possible broader applications, yet aiming
to further develop better closure models for turbulence.

During the development of this new nonlinearK-« model
in the forms of Eqs.(41) and(42), respectively, the Maxwell-
ian iteration method(see Refs.[2,17,19]) has been used to
make the relevant approximations to a rate-type closure
model for the Reynolds stress(6), as was done in Eq.(8);
this method appears to be practically useful in developing the
algebraic nonlinearK-« closure models for turbulence.
Moreover, it should be noted that, in order to better capture
the complex turbulent phenomena, it is appropriate to appeal

FIG. 5. Computed streamlines(I). FIG. 6. Computed streamlines(II ).
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to more sophisticated models yet to be explored, say, a non-
linear K-« model containing more effective quadratic and
cubic terms or a rate-type closure model capable of capturing
the relaxation effect of the Reynolds stress, which is akin to
the second order(moment) closure approach based on mod-
eling the Reynolds stress transport equation, although its
implementation in numerical simulations of turbulence at the
present time requires a much greater amount of computer

resources than the computationally more feasible algebraic
nonlinearK-« models.
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